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Pyrromethene-BF 2 complexes (P- BF 2 ) were obtained from a-unsubstituted pyrroles by acylation and condensation to
give intermediate pyrromethene hydrohalides followed by treatment with boron trifluoride etherate. Conversion of ethyl
ci-pyrrolecarboxylates to a-unsubstituted pyrroles was brought about by thermolysis in phosphoric acid at 160'C, or by sapo-
nification followed by decarboxylation in ethanolamine at 1800 C, or as unisolated intermediates in the conversion of esters
to pyrromethene hydrobromides by heating in a mixture of formic and hydrobromic acids. Addition of hydrogen cyanide
followed by dehydrogenation by treatment with bromine converted 3,53r,5r-etramethyl-4,4rdiethylpyTromethene hvdro-
bromide to 3,5,-3r 5rtetramethyl.4,4r-diethyl-6-cyanopyrromethene hydrobromide, confirmed by the further conversion to
1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrromethene-BF 2 Complex on treatment with boron trifluoride etherate.

An alternation effect in the relative efficiency (RE) of laser activity in 1,3,5,7,8-pentamethvl-2,6-di-n-alkvlpv-rrome-
thene- BF2 dyes depended on the number of methylene units in the n-alkyl substituent, - (CH 2)n 11, to give RE -ý 100 when
n = 0, 2, 4 and RE 65.85 when n =1,3. (The RE 100 was arbitrarily assigned to the dye rhodamine 6G). The absence of
fluorescence and laser activity in 1,3,5,7-tetramethyl-2,6-diethyl-8-isopropylpyrromethene-BF 2 COMple and a markedly
diminished fluorescence quantum yield (61' 0.23) and lack of laser activity in 1,3.5, 7-tetramethvl-2,6-diethvl -8-cvclohexvlpvrT-
romethene-BF 2 complex were attributed to molecular nonplanarity brought about by the steric interference between each
of the two bulky 8-substituents with the 1,7-dimethyl substituents. An atypically low RE 20 for a peralkylated dye without
steric interference was observed for 1 ,2,6,7-bistrimethylene-3,5,8-triniethylp 'vrromethene -BF 2 complex- Comparisons with
peralkylated dyes revealed a major reduction in RE 0-40 for the six dyes lacking substitution at the 8-position.
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ABSTRACT complex 7q were attributed to molecular nonplan-
arity brought about by the steric interference between
each of the two bulky 8-substituents with the 1,7-di-

Pyrromethene-BF2 complexes (P-BF2) 7 were ob- methyl substituents. An atypically low RE 20 for a
tained from a-unsubstituted pyrroles 5 by acylation peralkylated dye without steric interference was ob-
and condensation to give intermediate pyrromethene served for 1,2,6,7-bistrimethylene-3,5,8-trimethylpyr-
hydrohalides 6 followed by treatment with boron tri- romethene-BF2 complex 7j. Comparisons with per-
fluoride etherate. Conversion of ethyl a-pyrrolecar- alkylated dyes revealed a major reduction in RE 0-
boxylates 4 to a-unsubstituted pyrroles 5 was brought 40 for the six dyes 7u-z lacking substitution at the
about by thermolysis in phosphoric acid at 160°C, or 8-position.
by saponification followed by decarboxylation in eth- Low laser activity RE was brought about by
anolamine at 180*C, or as unisolated intermediates functional group (polar) substitution in the 2,6-di-
in the conversion of esters 4 to pyrromethene hy- phenyl derivative 71, RE 20, and the 2,6-diacetamido
drobromides 6 by heating in a mixture of formic and derivative 7m, RE 5, of 1,3,5,7,8-pentamethylpyrro-
hydrobromic acids. Addition of hydrogen cyanide methene-BF2 complex (PMP-BF2) 7a and in 1,7-di-
followed by dehydrogenation by treatment with bro- methoxy-2,3,5,6,8-pentamethylpyrromethene-BF2

mine converted 3,5,3',5'-tetramethyl-4,4'-diethylpyr- complex 7n, RE 30. Diethyl 1,3,5,7-tetramethyl-8-cy-
romethene hydrobromide 9 to 3,5,-3',5'-tetramethyl- anopyrromethene-2,6-dicarboxylate-BFI complex, 7aa,
4,4'-diethyl-6-cyanopyrromethene hydrobromide 6bb, and 1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrro-
confirmed by the further conversion to 1,3,5,7-tetra- methene-BF2 complex, 7bb, offered examples of P-
methyl-2,6-diethyl-8-cyanopyrromethene-BF2 corn- BF 2 dyes with electron withdrawing substituents at
plex 7bb on treatment with boron trifluoride etherate. the 8-position. The dye 7aa, A,. 617 Pun, showved nearly

An alternation effect in the relative efficiency (RE) twice the power efficiency that was obtained from

of laser activity in 1,3,5,7,8-pentamethyl-2,6-di-n-al- rhodarmine B, A,,, 611 nin.
kylpyrromethene-BF2 dyes depended on the number
of methylene units in the n-alkyl substituent, -(CH2),H,
to give RE ! 100 when n = 0,2,4 and RE 65, 85
when n = 1,3. (The RE 100 was arbitrarily assigned
to the dye rhodamine 6G). The absence of fluores- INTRODUCTION
cence and laser activity in 1,3,5,7-tetramethyl-2,6-
diethyl-8-isopropylpyrromethene-BF2 complex 7 p and Along with identification of over 500 laser dyes for

a markedly diminished fluorescence quantum yield the spectral region, 109 to 1300 nm Maeda noted

(P 0.23) and lack of ?.,?er activitv in 1,3,5,7-tetra-
methyl-2,6-diethyl-8-cyclohexylpyrromethene-BF2  *To whom correspondence should be addressed.

O 1993 VCH Publishers, Inc. 1042-7163/93/$5.00 + .25 39
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special features in two groups of dye molecules. The ochromic shift of about I00 iIin ki'Ith each unit
group of fused linear 6,6,6-tricyclic ring systems increase in n, the nu mbc of conjugated ctliv-
contained the most important dyes and included lenic units in the odd nnnImbeed carbon chain
rhodamine 6G (R - 6G) 1. the laser dye with the connecting two heterocyclic nuclei in the mono-
highest power efficiency from flash lamp pumping basic salt, brought about a distribution of ab-
known at the time. In another group, the cyanine sorption, fluorescence, and laser activity overa wide
dyes 2 were recognized for the agility of their lu- spectral region. Structures 3a, A(,, 541 nm, and
minophors in providing laser activity in the longer 3b, Ajý, 800 nm, were seen as typical cyanine
wavelengths, particularly >800 nm. A bath- dyes [I.

0 +-

H5 C2 NH --- NHC2 H5 C1 -A I IA

I C 'ý ( nC= "
H3 C' CH3  N NI xI

C6H4CO2C2 H5-2
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N C-
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ity. In a typical procedure, 2.3,4-trimethylpyrrole

a CH3  CH3  H CH3 CI 5b, obtained from the corresponding a-pyrrolecar-
b CH3  OH3  CH3  CH3 C1 boxylate ester 4b, was treated with acetyl chloride
c CH3  CH, CHCH, OH3 C1 to bring about the formation of an unstable pyr-
d CH3  CH3  (CH2)2CH3 CH3 CI romethene hydrochloride intermediate 6b, the
e CH3  OH3  (CH2)3CH3 OH3 ClO CH, CH3  CH(CH3)2  CH3 CI product of a condensation between the pyrrole 5b
g CH3  CH3  C(CH3 )3  CH3 CI and its a-acyl derivative prepared in situ. The crude
h CH3  H -- (CH2)4- CI intermediate was treated with boron trifluoride
i CH3  CH3  -(CH 2) 4 -- Cl etherate in the presence of a tertiary amine for
j CH3  -- (CH2)3- CH3 CI conversion to the 1,2,3,5,6,7,8-heptamethyl deriv-
k CH3  CH2CH3 CH2CH, CH3 CI ative 7b [2]. In relative efficiency (RE) for laser ac-
I OH3  OH3  C6 H, CH3 CI tivity 1,3,5,7,8-pentamethyl-2,6-diethylpyrrometh-

m CH3  CH, NHCOCH, CH3 CI ene-BF 2  complex (PMDEP-BF 2), 7c was
n CH3  OCHa CH3  CH3 CI outstand:ngly successful with RE 110 in compar-
a CH2CH3  CH3  CH2CH3  CH3 Cl ison with RE 100 assigned to R-6G [2,3,4].
p OH(0H3)2, OH, CH20H, OH3 C1
q c-C6H,, CH3  CH2CH 3  CH3 C1 The P-BF 2 molecules 7 uniquely blended the
r CH2 0COCh3  CH3  CH2CH3  CH3 C1 structural features of a cyanine dye 2, n = 3, and
s p-(CH3 )2NC 6H5  OH3  CH2 CH, CH3 CI a planar fused tricyclic ring system and intro-
t p-CH30C6 H, CH3  H CH3 CI duced laser dyes with a linear 5,6,5-tricyclic ring
u H CAHs CH2CH3  CH3 Br system. The parent linear 5,6,5-tricyclic antiaro-
v H C6H5  C8H, CH3 Br matic (4me) hydrocarbon, s-indacene CI2H 8 8, [5]
w H C6H5  H CH3 Br was a red solid but was not described as fluores-
x H CH3  C(CH3 )3  OH3 Br cent. In contrast, the parent 6,6,6-tricyclic aro-
y H CH2CH3 CH2CH, OH3 Br matic (4m + 2e) hydrocarbon, anthracene C 14 H 10 ,
z H OH3  OH3  OH3 Br
aa ON OH3  CH HO 3 Br showed A, 400 nm [6]. Laser activity in fluorescentaa CN CH3 CO2CH2CH3 CH3 Br

bb CN CH3  CH2CH3  CH3 Br dyes showed a dependence on 7r electron distri-
bution as described by a simple rule found by T
Drexhage [7]. The rule states that "in a dye where

Recently, derivatives 7 of pyrromethene-BF 2  the 7r-electrons of the chromophore can make a loop
complex (P - BF 2) were found to have laser activ- when oscillating between the end groups, the trip

H3C CH 3  H3C CH 3  CH 3

/ ,,- -. CH3
+ +3CH CH2CH 3 HC K

CH3 CH2  N+ N CH2CH3  H312 B~N COCF3

93C H H CH 3  H3 C R R HH

BR=
10 R =CH2CH3

11 R=F
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let yield will be hiehler than in a related cornpIOnn~d nion of ;I Knoevenapel lolli.r orIf cihl\ I N
[e.g., R-6G and P- BF 2] whiere this loop is blocked. ol-o-!knvI) nnac ~'c (,h% pm\orAl 2
It may be said that the cir-cu lat inrg electrons create carboxyla tes 110) cih lIv3 meth 1v .2.4. I,, wti air

anl orbital magnetic momen1~t 'which Couiples Withi doylpnttc proeahx ii' 4j ohI l

the spin of the electron. This increased spin-orbit tamned by a base cirtalvzed C\ ci zi/at 11 of aIrno mi-
coupling then enhances the rate of intersystem solated enamnine 13, in 11.111 otaMined h-0111 a
crossing, thus giving rise to a higher triplet yield." condensation between qlycine ethv1 esite and a
According to Sorokin [8], an accumulation of mol- acetylcyclopentanone.
ecules in the triplet state was partially attributed Conversion of a-p\'rrolecarbox\'late esters to a-
to a slow rise-time of the flash lamp and brought unsubstituted pyrroles b\ rreatment with phos-
about significant reduction in laser activity as phoric acid provided a4 convenient preparation (of
triplet-triplet (T-T) absorption overlapped with pyrrole 5b [2] and was extended to 1-n-propyl, 3-
the fluorescence spectral region. ti-butyl, and 1-isopropvl derivatives 5d-f of 2,4-di-

Although pyrromethene salts also met the methylpyrrole 5a. A similar conversion afforded 3-
structural requirement of a cyanine dye with n methyl-4,5,6,7-tetrahydroindole 5i from its 2-car-
3, they were weakly fluorescent, e.g., 3,3',5,5'-te- boxylate ester derivative 4i. Unsuccessful attempts
tramethyl-4,4'-diethylpyrromethene hydrobrom- to extend the method to the preparation of 2,4-di-
ide 9 showed Of 4.3 x 10-4 [91. Conversion to boron methyl-3-ieri-butylpyrrole 5g led instead to the re-
complexes, such as I ,3,5,7-tetramethyl-2,6-diethyl- placement of both the carboethoxy and tert-butyl
pyrromethene-B(C 2H5)2 complex 10 ((i,- 0.31) and groups with hydrogen to give 2,4-dimethylpvrrole
the corresponding BF2 Complex 11I @Pf 0.8 1), raised 5a. The pyrroles 5g, j, k wvere obtained from ethyl
the fluorescence quantum yield by a thousandfold 3,5-dimethyl-4-terit-butylpvrrole-2-carboxy-late 4g,
[9]. In addition, laser activity 550 to 570 nim be- ethyl 3-methyl -2,4,5,6- te trahvdroc vc lope nta [c] py r-
came a characteristic property of P-BF2 7 [2,3]. This rolecarboxylate 4j [10], and ethyl 3,4-diethyl-5-
property qualified P-BF, compounds as bridged methylpyrrole-2-carboxvlate 4k [I I] by saponifi-
cyanine dyes, n = 3, with the particular feature of cation with potassium hydroxide followed by de-
a hypsochromic shift of over 200 rtm from A,,as 800 carboxylation of the free acids in ethanolamine at
nmn observed for a linear cyanine dye 3b, n = 3. 180'C.

In this report, we wish to offer further char-
acterization of P-BF2 laser dyes, including obser- Pyrroinethene-BF, Conrple-res (P-BF,).
vations on substituent effects in the 1,2,6,7, and 8- Treatment with an acyl chloride converted pyr-
positions. roles 5 to P-BF 27 via unstable and generally uni-

solated pyrrome thene hydrochlorides 6. Krypto-
pyrrole 5c and acetyl chloride gave the isolated but

RESULTS AND DISCUSSION unstable 3,5.3',5' .6-pen ta met hylI.4,4'-d ie thy lpyrro-

Synthesis methene hydrochloride 6c [2]. It was subsequently
determined that conversion of the unstable inter-
mediate 6c without isolation to PMDEP-BF2 7c by

Pyrroles. A Knorr cyclization between ethyl a- treatment with boron trifluoride etherate was rec-
aminoacetoacetate (prepared in situ) and a 3-alkyl- omnmended and became the basis for a general pro-
2,4-pentandione was selected for the preparation cedure for conversions of other pyrroles to P-BF2 .
of ethyl alkylpyrrole-2-carboxylate derivatives 4b- Derivatives of 2 .4-di meth-vlpyrrole wvith 3-substi-
f, L. After attempts to obtain ethyl 3,5-dimethyl-4- tuents (n-propvl 5d, n-butvl 5e, isopropvl 5f, tert-
tert-butylpyrrole-2-carboxylate 4g by a Knorr cy- butyl 5g, phenyl S1, and acetamido Sm) gave the
clization were unsuccessful, it was prepared from corresponding 2,6-dlisubsuituted derivatives 7d-g,
ethyl 3,5-di me thylpyrrole-2 -carboxy late 4a in an 1, mn of I ,3,5.7,8-pentamethl\,pvrromiethiene--BF2
alkylation with zert-butyl acetate. In a modifica- complex (PMP-BF2 ) 7a Similar treatment with

H5C6  C6H5  H3C OIN CH3

o -N N / COCH3 CH3CH2 \ N RN /CH 2CH3
H-3CC I I

HI H3C H H OH3  H3C CH 3
NCH 2CO2C2H5  Br_ 15

13 14
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acetyll chloride converted tetrahydroindole 5h1, 3- TABLE 1 Pyrrornethene-B3F, Laser Dyes 7
methyltcrrahydroindole 5i, 3-iiicth -yl-2,4,5,6-te---------- _ _______

trahiydrocyclopenta[clpyniole 5j, and 3,4-diethyl-5- 7 A_,,J(fni) log t ,b(n~ni 1I, X~b (nm) RE'
methylpyrrole 5k [11] to 2,3,6,7-bistetramrcthty-- _______

lene-8-rnethylpyrromethene-Bf-, complex 7h, its a d 493 4.90 519 0.99 542 100
1,7-dimethyl derivative 7i, 1,2,6,7-bistrimethylene- bW 518 4.67 546 0 70 573 65
3,S,8-trimethlylpyrromethene-BF 2 complex 7j, and cd 517 4.81 546 0.83 570 110
1 ,2,6,7-tetraethyl-3,5,8-trimethylpyrromethene-BF, d 51 7 4.89 549 0.99 578 85
complex 7k and converted 2,3-dimethyl-4-meth- e 518 4.92 550 0.90 580 100

oxprrl n o1,-ietoy-,,,68pet- f 516 4.85 548 0.67 577 45
oxpyroe n o ,7diehoy-,35,,8peta 525 4.83 567 0.77 597 50

mnethylpyrromethene-BF 2 complex 7n. h 535 4.93 560 0.84 589 75
Kryptopyrrole 5c condensed with propionyl i 522 4.91 552 0.80 582 90

chloride, isobutyryl chloride, cyclohexanecarbonyl i 512 4.82 535 0.81 560 20
chloride, acetoxyacetyl chloride, and p-dimethy- k 521 4.89 554 0.75 582 75
laminobenzoyl chloride to produce the 8-ethyl, 8- 1 519 4.90 559 0.43 582 20
isopropyl, 8-cyclohexyl, 8-acetoxymethyl, and 8-di- m 498e 4.63 542' 0.17 566' 5
methylaminophenyl derivatives 7o-s of 1,3,5,7-te- nl 485 4.85 522 0.84 540 30
tramethyl-2,6-diethylpyrromethene-BF2 Complex.- 2 .2 54 .4 51 7
A straightforward extension of the procedure was p 527 4.84 562 0.0 79 _

q 516 4.81 526 0.23 h _

found in the reaction between 2,4-dimethylpyrrole r 543 4.89 575 0.74 605 30
5a and p-anisoyl chloride to give 1, 3,5,7- tetra me- S 519 4.95 575 0.04 h

thy 1-8-p-methoxyphenylpyrromethene-B F 2  corn- t 497 4.86 521 0.63 547 50
plex 7t via the intermediacy of the otherwise un- u 540 5.00 564 0.60 582 10
characterized pyrromethene hydrochloride 6t. v 552 4.91 590 0.69 h __

Attempts to convert 2-trifluoroacetyl-3 .5-dime- w 521 4.92 551 0.61 580 5
thylpyrrole 12 to a derivative of 8-trifluoromethyl- x 527 4.93 554 0.84 580 30
pyr-romethene-BF 2 complex were unsuccessful. Y 529 4.89 554 0.70 580 40

Treatment with hydrobromic acid in formic Z 528 4.84 552 0.56 570) 30
aa 556' 4.98 589' 0.82 617'ý 55acid brought about the conversion of a-pyrrole- bb 580' 4.72 620' 0.55 6701' k

carboxylate es 'ters 4 to pyrromethene hydrobrom-
ides 6 via the presumed intermediacy of a-unsub- *5 x 10-" M in ethanol except where noted otherwise . b 2 x 10-4

stittedpyrole 5 flloed y cndenatins ith M in ethanol, except where noted otherwise. IRelative efficiencystitted yrrles folowe by ondesatons ith 100 assigned to R-6G. 'Ref. [2]. * 5 x 10-6 M in tnifluoroethanol.
a-formyl derivatives formed in situ. Thus, the es- ' 2 x 10-4 M in trifluoroethenol. 9 With reference to R-6G (P 0.90
ters 4k, o, and p afforded the pyrromethene salts (K. H. Drexhage. J. Res. Nat. Bur. Std., BOA, 1976, 421). h No laser
6y, 6u, and 6vi, respectively. Straightforward treat- activity detected. '2 x 10-4 M in p-dioxan. ' Obtained from a Phase-
ment with boron trifluoride etherate converted these R DL-1I 100 dye laser with DL-5Y coaxial tlashlamp. 'RE not de-
crude pyrromethene hydrobromides to 1 ,2,6,7-te- teind
traethyl-3 ,5-dimethylpyrromethene-BF 2 complex
7y and the 1,7-diphenyl-2,6-diethyl-3,5-dimethyI and Laser Activity
1 ' 2,6,7-tetraphenyl-3,5-dimethylpyrromethene-BF2
derivatives 7u, v. Variation in similar pairs of 2,6-dialkyl substi-

Similar treatment converted 3,3'-diphenyl-4,4'- tuents in derivatives 7b-g of PMP-BF2 7a was car-
diacetyl-5,5'-d imethyl pyrrome the ne hydrobrom- ried out in a search for dyes competitive with
ide 14 (from ethyl 3-phenyl-4-acetyl-5-methylpyr- PMDEP-BF 2 7c in laser activity. As the pairs of
role-2-carboxy late 4q) after an initial deacetyla- similar 2,6-disubstituents changed from hydrogen
tion to 1,7-diphenyl-3,5-dimethylpyr-romethene-BF 2 to methyl, ethyl, ni-propyl. ta-butyl, and isopropyl
complex 7w. An assumed unisolated pyrromethene in dyes 7a-f, the electronic absorption shifted as
hydrobromide intermediate 6x from the pyrrole- expected from A,,, 493 nm to 517 ± I nm with a
carboxylate ester 4g was converted to 1 ,3,5,7-te- nearly constant log c 4.8 ± 0.1. A significantly larger
tramethyl-2,6-di-iert-butylpyrromethene-BF 2  bathochromic shift led to A,,,~ 525, log c 4.83, for
complex 7x. the 2,6-di-tert-butyl derivative 7g (Table 1).

Addition of hydrogen cyanide to the pyrro- Laser activity ki., was previously reported for
methene hydrobromide 9 [12] presumably brought PMP-BF 2 7a at 542 nm and for PMDEP-BF 2 7c at
about the formation of 3,5,3,5'-tetramethyl-4,4'- 570 nmn [2]. Similar activity was found in the 2,6-
diethyl-6-cyanopyrromethane 15. Dehydrogena- dimethyl, 2,6-di-n-propyl, 2,6-di-n-butyl, and 2,6-
tion by bromine followed by treatment with boron diisopropyl derivatives 7b, d-f at 573, 578, 580, and
trifluoride etherate converted the pyrromethane 15 577 nm and in the 2,6-di-teri-butyl derivative 7g at
to 1,3,5,7-tetra me thylI-2,6-die thyl1-8 -cya nopyrro- 597 nm. In partial fulfillment of the factors con-
methene-BF2 complex 7bb via the corresponding tributing to laser activity, each of these seven dyes
pyrromethene hydrobromide 6bb. showed high extinction coefficients log E 4.8 to 4.9
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and high fluorescence quantum yields 0,P 0.67 to the 2,6-diphenyl der ivative 71 RI- 20. The singular
0.99. PMP-BF2 7a, PMDEP-BF, 7c, and the 2,6-di- example of 1.7-dimethoxy-2,3.5.6.8-pentamethvl-
n-butyl derivative 7e were superior to the other four pyrrometlicne-BF, complex 7n RE 30 suggested
2,6-dialkyl derivatives in laser activity RE. The data that laser activity was diminished b, e!ectron do
revealed an alternation in RE as the 2,6-di-n-alkyl nating substituents at the 1,7-positions. Poor las-
substituents contained an odd number of carbon ing activity resulted from the introduction of phenyl
atoms 7b, d (RE 65, 85) or zero and an even num- substituents in the I- and 2-positions in dyes 71,
ber of carbon atoms 7a, c, e, RE -; 100 (Table 1). 7u, and 7w, and the absence of lasing activity was
Although the bistetramethylene dyes 7h, i and the noted for 1,2,6,7-tetraphenyl-3,5-dimethylpyrro-
bistrimethylene dye 7j gave nearly identical A,,. methene-BF 2 complex 7v.
with high extinction coefficients, log e > 4.8, and
shared strong fluorescence OPf ; 0.8, they differed
significantly in laser activity with RE 5 75 for the H3C CH 16 w = CH3. Y = so3 M'

bistetramethylene dyes and RE 20 for the bistri- / '• "[- M = Na. K. Rb. Cs. NH4.(CH3 )4 N

methylene dye (Table 1). The structure for the dye YN+ /_". 17 W=CH2CH3' Y=S03-N.+
7j was confirmed by an X-ray crystallographic N /"
analysis to have chromophore planarity with neg- H3 c F F CH 3  IS W=CH3. Y=SoSCH3
ligible strain [13]. 19 W = CH2CH3. Y = CO2CH2CH 3

Alkyl and other group substituent effects at the
8-position in 1,3,5,7-tetramethyl-2,6-dialkylpyrro-
methene-BF2 complex structures were examined. EXPERIMENTAL
In comparison with peralkylated structures (7b, g,
k), corresponding examples lacking a substituent Instruments for spectroscopic measurements in-
at the 8-position (7z, x, y) showed a slight bath- cluded the following: Perkin-Elmer 1600 FTIR,
ochromic shift in absorption, an erratic effect on Varian Gemini 300 NMR, Hewlett-Packard 5985 (70
fluorescence, and a marked decrease in laser ac- eV) GC-MS, Cary 17 (UV), and Perkin-Elmer LS-5B
tivity RE (Table 1). Presumably, nonplanarity for Luminescence spectrometer. A dye laser was con-
1,3,5,7-tetramethyl-2,6-diethyl-8-isopropylpyrro- structed at the Naval Ocean Systems Center. It op-
methene-BF2 complex 7p was brought about by a erated in the nonflowing (static) mode and had no
steric interaction between the isopropyl group and tuning capability. The dye cell (2.5 mm diameter,
the 1,7-dimethyl substituents and led to the large 50 mm long) had an eliptical cavity configuration
reduction in fluorescence and the loss of laser ac- of small eccentricity. The flashlamp EG&G model
tivity. A similar steric effect was introduced by the FX 139C-2 produced a pulse that had a rise time
replacement of the 8-ethyl substituent in 1,3,5,7- of 200 ns, half-width length of 600 ns, and input
tetramethyl-2,6,8-triethylpyrromethene-BF 2 com- energy of 2 J at 6.32 kV, 5 J at 10.00 kV, 7.2 J at
plex 7o 0 0.84 with 8-cyclohexyl to bring about re- 12.00 kV, and 10 J at 14.14 kV [ 14,15]. Laser en-
duction in the fluorescence quantum yield to P 0.23 ergy outputs were measured with an accuracy of
and no laser activity for the dye 1,3,5,7-tetrame- ±5% by a Scientech 365 power and energy meter
thyl-2,6-diethyl-8-cyclohexylpyrromethene-BF 2  [16].
complex 7q. Insofar as laser dyes with cyano sub- Light absorption, luminescence, and laser ac-
stituents were rarely encountered (Maeda listed tivity properties for the dyes 7 are described in Ta-
four) [1], the laser activity in diethyl 1,3,5,7-tetra- ble I. Each recorded UV absorption was restricted
methyl-8-cyanopyrromethene-2,6-dicarboxylate-BF 2  to the highest wave length. Fluorescence quantum
complex 7aa and 1,3,5,7-tetramethyl-2,6-diethyl-8- yields of the dyes were determined for ethanol so-
cyanopyrromethene-BF 2 complex 7bb was of ex- lutions with excitation at 450 and 460 nm by ref-
ceptional interest. erence to acridine orange, (p 0.46 [17], in ethanol;

Pairs of similar functional group (polar) sub- for the dye 7 p, the reference was R-6G, ( 0.90. Ta-
stituents in the 2,6-positions of P-BF2 dyes brought ble 2 lists yield, mp, 'H NMR. and elemental anal-
about erratic results in RE. As expected, fluores- ysis for the laser dyes 7. Melting points were ob-
cence and laser activity were drastically reduced tained from a Mel-Temp II device and were
in a P-BF2 dye by a nitro substituent and quenched uncorrected. The solvent for 'H NMR spectra was
by a bromo substituent [2]. Metal and ammonium chloroform d with tetramethylsilane as an internal
salts of 1,3,5,7,8-pentamethylpyrromethene-2,6-di- standard. Elemental analyses were obtained from
sulfonic acid-BF2 complex 16 were exceptionally Midwest Micro Lab, Indianapolis, IN and Gal-
powerful dyes with RE 95, but the sodium salt of braith Laboratories, Inc., Knoxville, TN. Solvents
1,3,5,7-tetramethyl-8-ethylpyrromethene-2,6-di- were removed by rotary evaporation under re-
sulfonic acid-BF2 complex 17 showed RE 50 [2]. duced pressure unless indicated otherwise. Col-
Low values were also obtained for the disulfonate umn chromatography was performed on silica gel.
ester 18 RE 35 [2], the dicarboxylate ester 19 RE Molecular weights were confirmed by El-MS for
50 [2], the 2,6-diacetamido derivative 7m RE 5, and the pyrrole 4j 193 and for laser dyes 7d 346, 7e
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TABLE 2 Pyrromethene-BF 2 Laser Dyes 7

No. Yeld, Mp 'C H NMR (COCI) 6 Formula Calculated Found %

7d 21 193-194 2.57 (s, 3H), 2.46 (s, 6H). 2.33 (t. 4H), CoH2N28F, C, 68,86, H, 8.32. N, 8.03
2,29 (s, 6H), 1.42 (m, 4H), 0.91 (t. 6H) ,. 69 46; H, 8 25, N. 8.04

7e 18 185-186 2.58 (s, 3H), 2.47 (s, 6H). 2.35 (t, 4H), C22H3 3N2BF 2 C. 70.62: H, 8.83; N, 7.49

2.30 (s, 6H), 1.35 (m, 8H), 0.91 (1, 6H) C, 69.91; H. 8.81. N. 7.39

7V 15 186 dec 2.5 (s, 3H), 2.3 (s, 6H), 2.1 (s, 6H), 1.9- CoH29N2 BF 2 C, 69.36; H, 8.38; N, 8.09;
2.0 (m, 2H), 0.9-1.0 (d, 12H) F, 10.98 C, 69.40; H, 8.29; N, 8.13; F,

11.10

7g 15 246-247 2.67 (s, 6H), 2.59 (s, 3H), 2.46 (s, 6H), C2 2H33 N2BF2 C, 70.62; H, 8.83; N. 7.49
1.39 (s, 18H) C, 71.09; H, 9.01; N, 7.34

7h 19 191-192 6.8 (s, 2H), 3.03 (s, 3H), 2.5 (t, 8H), 1.77 C,8 H2 ,N2 BF 2 , C, 68.78; H, 6.68; N, 8.91
(t, 8H) C, 68.57; H, 6.72; N, 8.75

7i 32 265-267 2.96 (t, 4H), 2.56 (s, 3H), 2.40 (t, 4H), 2.26 C20H25 N2BF 2 C, 70.21; H, 7.31; N, 8.19
(s, 6H), 1.76 (m, 8H) C, 70.99; H, 7.49; N, 8.26

7j 14 268-269 dec 2.68 (t, 4H), 2.53 (t, 4H), 2.46 (s, 6H), 2.40 C, 8H2 ,N 2BF 2 C, 68.83; H, 6.69; N, 8.92;
(m, 4H), 2.34 (s, 3H) C, 68.99; H, 6.72; N, 8.76

7k 40 120 2.74-2.79 (q, 4H), 2.68 (s, 3H), 2.49 (s, C•oHqN 2BF2 C, 69.36; H, 8.38; N, 8.09;
6H), 2.35-2.40, (q, 4H), 1.16-1.21 (t, 6H), F, 10.98 C, 69.09; H, 8.43; N, 8.05; F,
1.04-1.09 (t, 6H) 10.74

71 45 234-236 dec 7.2-7.4 (s, 1OH), 2.6 (s, 3H), 2.45 (s, 6H), C2H 25 N 2BF 2 C, 75.54; H, 6.05; N, 6.77;
2.3 (s, 6H) F, 9.20 C, 75.78; H, 6.34; N, 6.64; F, 9.41

7m 19 340-343 dec 9.27 (s, NH), 2.66 (s, 3H), 2.29 (s, 6H), C,aH23N40 2BF2 C, 57.29; H, 6.36; N, 14.85
2.25 (s, 6H), 2.06 (s, 6H) C, 57.06; H, 6.18; N, 14.36

7n 31 210-211 3.9 (s, 6H), 2.65 (s, 3H), 2.47 (s, 6H), 2.0 C, 6H2,N20 2BF 2 C, 59.62; H, 6.52; N, 8.69
(s, 6H) C, 59.71; H, 6.68; N, 8.77

7o 60 150-152 3.07 (q, 2H), 2.52 (s, 6H), 2.42 (q, 4H), C1qH2 7N2BF 2 C, 68.69; H, 8.19; N, 8.43
2.38 (s, 6H), 1.34 (t, 3H), 1.07 (t, 6H) C, 68.80; H, 8.14; N, 8.40

7p 29 127-128 2.5 (m, 17H), 1.5 (d, 6H), 1.07 (t, 6H) C2QH2N 2BF2 C, 69.36; H, 8.38; N, 8.09
C, 69.37; H, 8.44; N, 8.10

7q 45 185 dec 2.40-2.60 (m, 16H), 1.35-2.30 (m, 11H), C23H33N2BF2 C, 71.50; H, 8.54, N. 7.25
1.03-1.08 (t, 6H) C, 71.86; H, 8.57; N, 7.42

7r 18 181-182 5.3 (s, 2H), 2.5 (m, 19H), 1.05 (t, 6H) C2 OH2N 20 2BF 2 C, 63.82; H, 7.18; N, 7.44;

C, 63.69; H, 7.20; N, 7.41
7s 32 330-332 dec 6.7-7.1 (m, 4H), 3.1 (s, 611), 2.5 (s, 6H), C25H32N3BF 2 C, 70.92; H, 7.56; N, 9.92;

2.2-2.3 (q, 4H), 1.3 (s, 6H), 1.1 (t, 6H) F, 8.98 C, 71.09; H, 7.82; N, 9.55; F, 8.49
7t 42 212-214 dec 7.1-7.3 (m, 4H) 6.1 (s, 2H), 3.8 (s, 3H), C2OH2,N20BF 2 C, 67.80; H, 5.93; N, 7.91;

2.3 (s, 6H), *1.3 (s, 6H) F, 10.74 C, 67.75; H, 6.01; N, 7.88; F,
10.75

7u 52 230-232 dec 7.33 (s, 1OH), 6.3 (s, 1H), 2.44-2.65 (m, C2 7H 2 7N2BF2 C, 75.73; H, 6.31; N, 6.54;
10H), 1.04 (t, 6H) F, 8.88 C, 75.65; H, 6.37; N, 6.28; F, 8.76

7v 42 308-310 dec 7.1-7.4 (m, 21H), 2.6 (s, 6H) C3,H2,N2BF2 C, 80.18; H, 5.15; N, 5.34;
F, 7.25 C, 79.85; H, 5.24; N, 5.26; F, 7.36

7w 40 225 dec 7.2-7.5 (m, 12H), 6.39 (s, 1H), 2.66 (s, C2.3H,9N2BF2 C. 74.19; H, 5.10; N, 7.52;
6H) F, 10.21 C, 74.21; H, 5,10; N, 7.38; F, 9.93

7x 9 235-236 6.98 (s, 1H). 2.66 (s, 6H), 2.29 (s, 6H), C2,H3,N2BF2 C, 70.00; H, 8.61; N, 7.77
1.36 (s, 18H) C, 69.51; H, 8.78; N, 7.45

7y 57 116-117 6.93 (s, 1H), 2.5 (m, 14H), 1.1 (m, 12H) CqH2 7N2BF2 C, 68.67; H, 8.13; N, 8.43
C, 68.70; H, 8.21; N, 8.34

7z 52 275 dec 6.94 (s, 1H), 2.47 (s, 6H), 2.14 (s, 6H), C, 5H,9N2BF2 C. 65.45; H, 6.90; N, 10.18;
1.97 (s, 6H) F, 13.81 C, 65.26; H, 6.85; N, 10.16; F,

13.90
7bb 9 155-156 2.4 (m, 16H), 1.05 (t, 6H) CI8H 22NBF2 C, 65.65; H, 6.68; N, 12.76

C, 65.46; H, 663; N, 12.63

374, 7g 374, 71 342, 7j 314, and 7x 360. IR absorp- diethyl-5-methylpyrrole-2-carboxylate 4k, 2,4-di-
tion data satisfactorily supported structure assign- methyl-3-ethylpyrrole 5c (kryptopyrrole). and

ments for the laser dyes 7. 4,5,6,7-tetrahydroindole 5h
Commercially available pyrroles included ethyl The following pyrroles and pyrromethene dc-

3,5-dimethylpyrrole-2-carboxylate 4a, ethyl 3,4- rivatives were prepared by the methods cited: ethyl



i,5-dilim-1t v] 0 4 'h ll l'h . -,'il(x il 4c 1181], ((Cl)t'l J: 6 9).t)1 (ý. 111), ,4.25 (q. 211). ? 4 1 (l, ,111,wl ),
tlhx'! 3,.l-diehihvi 4kIlethyVlpyrroie-2-carl)c .,ylatc. 4k 2.21 (K. 311). 1.65 ( ,. 4111). I 0() (t. il I) ,
I II I tlh\'l p-Icyl.-c\'hyl-5-nuilyllyrolc-2-car.
hb.xv'latc 4o I I,?.(], ethyl 3,4-diphciiyl-5-nieihyl- Ethyl 3 5-dti'eth'l-4-let r-h bu Ovlppit it' -2C hcb
Iwynolc 2-calbox\'latc 4 1) [201, ethyl 3-phienyl-4- late 4g. A solution of acltic ac2(id (5.0 ml), s|llh|ric
dcctl JN-5-mcdlhw'role-2-carboxylate 4q [20], 2,4- acid (I.2 ml), ethyl 3,5-dimethylpvrrole-2-carbox-
diinethylpyirule 5a [21], 2,4-dimethyl-3-phcnyl- ylate 5a (5.0 g. 0.03 tool), and te-lumtyl acetate (3.5
pyrrole, 51 [20], 3-acetamido-2,4-dimethylpyrrole g, 0.03 mol) was heated at 75°C for 2 hours and
Sni [22]. 3-rnethoxy-4,5-dimetlhylpyrrole Sn [23], combined with sodium carbonate (8 g) in ice water
1,2,3,5,6,7-hexamethylpyrromethene-BF 2 complex (100 ml) to bring about the precipitation of ethyl
7z [17], diethyl 1,3,5,7-tetramethyl-8-cyanopyrro- 3.5-dimethyl-4-tert-butylpyrrole-2-carboxylate 4g as
methene-2,6-dicarboxylate-BF 2 complex 7aa [24], a colorless solid, mp 108-1 10°C (Ref. [21] 107-
and 3,5,3',5'-tetramethyl-4,4'-diethylpyrrometh- W090 C), 3.1 g (47%); '1- NMR (CDCI13 ): 6 9.80 (s, 11),
ene hydrobromide 9 [12]. 4.28 (q, 211), 2.43 (s, 311), 2.39 (s. 3H), 1.35 (s, 91-),

1.33 (t, 3H).

3-u-Propyl-2,4,-pcntane~dione. A procedure [25]
for the methylation of acetylacetone was adapted. Ethyl 3- methyl- 2,4,5,6- tetrahydrocyclopenta
A mixture of iodopropane (317 g, 1.87 mol). 2,4- [c]pyr rolecarboxylate 4j. A procedure [10] for the
pentanedione (146 g, 1.51 mol), and anhydrous po- synthesis of pyrroles via N-(3-oxo-l-alkenyl)gycine
tassium carbonate (200 g) in dry acetone (300 ml) ester was adapted. Ethyl aminoacetate hydrochlo-
was heated at 60°C for 20 hours, cooled, combined ride (28 g, 0.20 mol) and triethylamine (20.1 V,, 0.20
with petroleum ether (300 ml), and filtered. The mol) were added to a solution of 2-acetylcyclopen-
filtrate was washed with a mixture (1: 1, 200 ml) ranone (25.0 g, 0.20 mol) in ethanol (400 ml). The
of petroleum ether and acetone. Solvent removal solution was stirred at room temperature for 15
left 3-n-propyl-2,4-pentanedione as a light yellow hours and concentrated. The residue was com-
oil, 53 g (25%), bp 195°C (Ref. [26] bp 73°C/1 1 mm). bined with water (250 ml) and extracted with
In a similar procedure, (a) iodobutane and 2,4-pen- methylene chloride (4 x 100 ml). The combined
tanedione gave 3-n-butyl-2,4-pentanedione as a light extract was washed with water (100 ml), dried (so-
yellow oil, 28%, bp 208°C (Ref. [27] bp 104-106°C/ dium sulfate), and concentrated to leave a light
20 mm) and (b) isopropyl iodide and 2,4-penta- brown oil. The oil was added with stirring at 50°C
nedione gave 3-isopropyl-2,4-pentanedione as a light to a solution of sodium ethoxide (14 g, 0.20 mol)
3ellow oil, 40%, bp 182 0C (Ref. [281 bp 94°C/45 mm). in absolute ethanol (400 ml). The mixture was

heated at 80°C for 3 hours and poured into water
Ethyl 3,5-dimethyl-4-n-propylpyrrole-2-carboxy- (500 ml) to precipitate a light yellow solid. Re-

late 4d. A solution of sodium nitrite (28.2 g, 0.41 crystallization from ethanol gave ethyl 3-methyl-
mol) in water (100 ml) was added to a stirred cold 2,4,5,6-tetrahydrocyclopenta[c]pyrrolecarboxylate
solution of ethyl acetoacetate (49.4 g, 0.38 mol) in 4j, 9.1 g (24%) as a pale yellow solid, mp 166-1670 C;
acetic acid as the temperature was held bel6w 15°C. 'H NMR (CDCI3): 8 8.38 (s. IH)- 4.24 (q, 21-), 2.78
After the solution was stirred and stored overnight (t, 2H), 2.527(1,R), 2.30 (m. 21-1), 2.18 (s, 3H), 1.30
at 25°C, 3-n-propyl-2,4-pentanedione (53.7 g, 0.38 (t, 3H). Anal. calcd. for C1,1H 5NO2 : C. 68.39; H, 7.77;
mol) and zinc (53 g) were sequentially added and N, 7.25. Found: C. 68.40; H-[, 7.85; N. 7.15.
the mixture was stored at 60*C for I hour. Dilution
with water brought about the precipitation of ethyl 2-Trifluoroacetyl-3,5-dimethylpyrrole 12. Tri-
3,5-dimethyl-4-n-propylpyrrole-2-carboxylate 4d as fluoroacetic anhydride (15.8 g, 75 remol) was add4d.
a yellow solid, 22.4 g (29%), mp 98-99°C (Ref. [29] d,-opwise with stirring to a solution of 2X-dime-
mp 99-99.5°C) after recrystallization from ethanol; thylpyrrole 5a (9.6 g, 50 mmol) in benzene (140 ml)
'H NMR (CDCI3): 8 9.3 (s, I1H), 4.25 (q, 2H), 2.55 (t, at 0°C. The mixture was stored at 0°C for 3 hours
21I), 2.24 (s, 314), 2.18 (s, 3H), 1.41 (m, 2H), 1.30 (t, and washed with water (25 ml). The separated or-
3M), 0.90 (t, 3H). The procedure was extended to ganic layer was dried (magnesium sulfate), con-
the conversions of: (a) 3-n-butyl-2,4-pentanedione ceiltrated, and chromatographed (silica gel, hex-
to ethyl 3,5-dimethyl-4-n-butylpyrrole-2-carboxylate ane/ethyl acetate. 3/I) to give 2-trifluoroacetyl-3,5-
4c, a yellow solid, 32%, mp 99-100°C (Ref. [30] mp dimethylpyrrole 12 as a colorless solid, mp 80tC,
99°C); 'H NMR (CDCI3 ): 8 9.35 (s, 114), 4.27 (q, 2H), 10.6 g (55%); IR (KBr): v 3309, 1630, 1563, 1500,
2.50 (t, 2H), 2.25 (s, 3H), 2.15 (s, 3H), 1.40 (m, 4H), t443, 1227, 800; '14 NMR (CDCI3): 8 5.9 (s, 1H), 2.35
1.31 (t, 311), 0.91 (t, 3H); (b) 3-isopropyl-2,4-pen- (bs, 6H). Anal. calcd. for CRtISNOF3 : C, 50.26; 1H,
tanedione to ethyl 3,5-dimethyl-4-isopropylpyrrole-2- 4.18; N, 7.32; F, 29.84. Found: C, 50.27; 14, 4.28; N.
"carboxylate 4f, 20%, mp 104-106°C (Ref. [29] mp 7.16; F, 29.92.
105-106.50C); and (c) 2-acetylcyclohexanone to ethyl
3-methyl-4,5,6,7-tetrahydroindole-2-carboxylate 41, Phosphoric acid method[ , the conveision of ethy;
50%, mp 111-I13°C (Ref. [31] 110°C); 'H NMR pyrrole-2-carboxylates to a-un., bstituted pyrroles. 2.4
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Distillation gave 175 ml that was extracted with Extraction by met•lhylelne chloride (3 X 100 i10) fol
diethyl ether (3 x 100 ml). The organic phase was lowed by solvent removal anid distillation tl a re-
dried (magnesium sulfate) and concentrated to give sidual oil, bp I 10-11I1°C (20 inm) gave 3-metnhyl
a dark brown oil. Distillation gave 2,4-dimethyl-3- 2,4,5,6-tetrahvdrocyclopenta[c]pyrrole 5j, 3.6 1t
isopropylpyrrole 51F as a colorless oil, 1.6 g (30%,, (64%) as a coiorless oil; 41-1 NMR (CDCIl):Y76TN
bp 65-66°C (10 mm). IR (KBr): v 2296, 1684, 1591, 11-1), 6.33 (s, II1), 2.67 (t. 211), 2.59 (t, 21-1), 2.35 (1n,
1448, 1094; 'H NMR (CDCI3): 8 6.4 (s, 1H), 2.3 (s. 211), 2.22 (s, 311). Anal. calcd. for ClI,IN: C, 79,34;
31-1), 2.2 (s, 3H), 1.9 (m, I1H), 1.0 (d, 614). Anal. calcd. 111. 9.09; N, 11.59. Found: C, 79.12; H1, 9.29; N. 11.60.
for C9H, 5N: C, 78.83; H, 10.94; N, 10.21. Found: C,
78.69; H, 10.87; N, 10.12. 2,6-Di-n-propyl-1,3,5,7,8-1penta methylpyrrometh-

Similar reactions with phosphoric acid: (a) ethyl ene--BF2 complex 7d. According to a procedure
3,5-dimethyl-4-n-propylpyrrole-2-carboxylate 4d previously described [2], acetyl chloride (8.0 ml,
converted to 2,4-dimethyl-3-n-propy'lpyrrole 5d, 54%, 0.11 mol) was added dropwise over a period of 5
as a semi-solid, (Ref. [32] mp 13.5"C); 'H NMR minutes to a solution of 2,4-dimethyl-3-n-propyl-
(CDC13): < 7.30 (s, 1H), 6.25 (s, 1IH), 2.40 (t, 2H), pyrrole 5d (7.0 g. 0.05 mol) in dichloromethane (5
2.15 (s, 31-1), 2.00 (s, 3H), 1.30 (m, 21-1), 0.90 (t, 3H); ml). The reaction mixture was heated at 40'C for
(b) ethyl 3,5-dimethyl-4-n-butylpyrrole-2-carboxy- 1 hour, cooled to 25°C, diluted with hexane (250
late 4e to 2,4-dimethyl-3-n-butylpyrrole 5c as an oil ml). triturated, and decanted. The residue, pre-
[30] 48%; 'H NMR (CDCIj): 8 7.45 (s, IH), 6.30 (s, sumed to be crude 3,5,3',5",6-pentamethyl-4.4'-di-
IH), 2.30 (t, 2H), 2.15 (s, 3H), 2.01 (s, 3H), 1.40 (m, n-propylpyrromethene hydrochloride 6d, was
4H), 0.90 (t, 3H); and (c) ethyl 3-methyl-4,5.6,7-te- treated without further purification with ethyldi-
trahydroindole-2-carboxylate 41 to 3-meihyl-4,5,6,7- isopropyl amine (45 g) (triethyl amine was also ef-
tetrahydroindole 51, 53%, mp 55-57"C (Ref. [33] fective) in toluene (300 ml) and stirred 15 minutes.
58"C); 'H NMR (CDCl 3): 8 7.30 (s, IH), 6.31 (s, IlH), After boron trifluoride etherate (40.8 ml, 0.33 mol)
2.47 (m, 4H), 2.05 (s, 3H), 1.82 (m, 4H). was added dropwise with stirring, the solution was

heated at 40"C for I hour, washed with water (200
2,4-Dimethyl-3-tert-butylpyrrole 5g. A proce- ml), dried over magnesium sulfate, and concen-

dure reported for the decarboxylation of deriva- trated to give a dark brown solid. Flash chromato-
tives of pyrrole-3-carboxylic acid [34] was adapted. graphic purification (twice. silica gel, 300 g, 230-
A solution of ethyl 3,5-dimethyl-4-tert-butylpyr- 400 mesh, 60 A, toluene) followed by concentration
role-2-carboxylate 4g (3.0 g, 0.01 mol) and potas- of the green-yellow fluorescent fraction gave the P-
sium hydroxide (6.0 g, 0.11 mol) in ethanol (50 ml) BF2 7d as a solid, 1.8 g. Further characterization
was heated at 80"C for 4 hours, combined with ice and examples of similar conversions of pyrroles 5e-
water (200 ml), and made slightly acidic by the ad- 5n to P-BF2 derivatives 7e-7n are described in Ta-
dition of acetic acid to bring about the precipita- bles I and 2.
tion of crude 3,5-dimethyl-4-tert-butylpyrrole-2- When acetyl chloride was replaced with pro-
carboxylic acid 4 (W = CH3 , X = C(CH 3).3, R = pionyl chloride, isobutyrvl chloride, cyclohexane-
CO 2H). The crude acid was combined with etha- carbonyl chloride, acetoxvacetyl chloride, and p-
nolamine (5 g), heated at 180"C for I hour, and di- dimcthylaminobenzoyl chloride, similar reaction
luted with ice water (100 ml) to bring about the sequences converted kryptopyrrole 5c to 8-ethyl, 8-
precipitation of 2,4-dimethyl-3-tert-butylpyrrole 5g isopropylv-8-.ey-lohexyl, 8-acetoxymethyl, and 8-di-
as a colorless solid, 1.6 g (79%), mp 70-71"C (Ref. methylaminophenyl derivatives 7o-s of 1,3,5.7-te-
[21] 69-71"C) after drying in a vacuum for 24 hours; tramethyl-2,6-diethylpyrromethene-BF 2 complex
'H NMR (CDCI3): 6 7.60 (br, I H), 6.30 (s, I H), 2.25 7 (X = Z = CH3 , Y = CH.,CH,). Treatment with p-
(s, 3H), 2.15 (s, 3H), 1.28 (s, 9H). By the phosphoric anisoyl chloride followed by boron trifluoride eth-
acid method, the pyrrole ester 4g was converted to - crate converted 2,4-dimethx'lpyrrole 5a to 1,3.5,7-
2,4-dimethylpyrrole 5a [21]. tetramethyl-8.p-methoxyplhenyl-pyrrometlhnw-4 r3%-

complex 7t. The products 7o-t are described in Ta-

3-Methyl-2,4,5,6-tetrahydrocyclopenta[C]pyrole bles I and 2.
5J. A solution of ethyl 3-methyl-2,4,5,6-tetrahy-
drocyclopenta[c]pyrrolecarboxylate 4j (9.1 g, 0.04 Pyrromethene Itydrobromides and BF, Corn-
mol) rind potassium hydroxide (26 g, 0.47 mol) in iple.xes. Crude pyrromethene hydrobromides 6 wert,
ethanol (200 ml) was heated at 80"C for 4 hours obtained from a-pyrrole carboxylate esters 4 [181
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and conlvertedl \ithlou t puuifIicat ion to 11- 13F, dyes to I .,-ctantv- 6de y - mpro
7. A mixture of ethyl 3-hnl4-ty-- ehl ethlwne-11Fl,~ complex 7bb (Tables, I ijid 2).
pyrrole-2-carboxvlate 4o (2.57 g, 10 mnmol), hy-
drobromnic acid (I nill, 48%), and formic acid (3.5 AC.YNOwI,IFt)(MIINTS
V) was heated at 1000 C for 4 hours. The reaction
mixture was cooled to O0 C to bring about the Sep. Financial assistance was received fr-om (iNR, ARO,
aration of crude 3,3'-diphzenyl-4,4'-diethiyl-S.5'-di- and the Louisiana Board cf Regents (LEQSF-RD-
methylpyrroinethiec hydrobromide 6u 1 .3 g (SS%) n-rp B-06 and RD-B- IS). TGP wishes to thank NOSC In-
2350 C' (dec); ethyl 3,4-diphenyl-5-r-ie-thyl-pyrrole-2- dependent Research p, -)gram for support.
carboxylate 4 p gave crude 3,4,3',4'-tet7-aphenyl-5,5'-
dimethylpyrromethene hydrobromide 6v (75%) mp REFERENCES
280'C (dcc) (Ref. [120] mp 280*C (dec)); and ethyl- (1M ad:LsrDeAaei rsTko a3-phenyl-4-acetyl-5-methylpyrrole-2-carboxytatc 4q pI.Mean, Lase Dyes, AcdeicPrss4Tk)..a
gave crude 3,3'-diphenvl-4,4'-diacetyl-5,5'-dimnethyl- pan . ppa, . Th9-21(1984).-L onL .Wlo

pyrrmeteit hyrobomie 14(501o)mp 30' (dc). J. H. Boyer, 1. R. Politzer, T. G. Paviopoulos, Het-
In similar conversions, 3,5-dimethyl-4-tert-butyl- eroato~iz Chem., 1, 1990, 389.
pyrrole-2-carboxylate- 4g gave crude 3,5,3',5'-tetra- [3] T. G. Pavlopoulos, .' H. Bover, M. Snah, K. Than-
methyl-4,4'-di-tert-butylpyrromethene hydrobromide garaj, M.-L. Soong, AppI. Opt., 29, 1990. 3885.
6x and ethyl 3.4-diethyl-5-methylpyrrole-2-carbox- [4] Professor Roger Falcone, Phvsics Department, Uni-
ylate 4k gave crude 3,4,3',4'-tetraethyl-5,5'-dimie- versity of California, Berkeley. CA, obtained RE 174

thylyrrmetenehydrbroide6y.for PMDEP-BF2 where RE 100 for R- 6G was the
Ehlprrmehen hat6,vydr aromde 14wsovrtdb arbitrary standard. Measurements were taken from

Eachsal 6u vx, and14 as onvrte bya Candela LFDL -20 linear flashlamp dye laser
treatment with boron trifluoride etherate, as de- (personal communication to J. H. Boyer).
scribed above, to the corresponding P-BF2 dye 7u, [5] B. M. Trost, P. L. Kinson, J. Amer. Chem. Soc., 97,
V, x, y, and 7w (see Tables I and 2). Treatment of 1975, 2438.
the pyrromethene hydrobromide 14 by boron tri- [6] E. L. Wehry: Effects of Molecular Stracture on Flu-
fluoride etherate also brought about dleacylation. orescence and Phosphorescence, in G. B. Guilbault
This may have oczxirred initially to give 3,3'-di- (ed). Practical Fluore~scence. Marcel Dekker,
phenyl-5,5'-dimethylpyrromethene hydrobromide 6w Inc., New York, p. 79 (1990).
as the precursor to the P-BE2 derivatives 7w or af- [7] K. H. Drexhage: Structure and Properties of Laser

Dyes, in F. P. Schaifer (ed). Topics in Applied Phys-
ter an initial formation of undetected I ,7-diphenyl- ics, Vol 1: Dye Lasers, Springer-Verlag. bt.-in. p.
2,6-di-acetyl.-3,5-dimethylpyrromethene-BF 2 com- 162 (1990).
plex 7 (X =C 6 H5 , Y =COCH3, W = H, Z = CH 3). [8] P. P. Sorokin, J. R. Rankard. V. L. Moruzzi. E. C.

Hammond, J. Chem. Phys., 48, 1968, 4726.
I,3,5,7-Tetramethyl-2,6-diethyl-8-cyatnopyrro- (9] A. l-olzwarth, H. Lehner, S. E. Braslavsky. K.

met hene-BF2 coinpleax 7bb. A procedure for a sim- Schaffner, Liebigs Anti Chem., 1978, 2002.
ilar conversion was followed [35]. Ethyl 3,'5-di- [10] H. K. Hombrecher. G. Horter. Synthesis, 1990, 389.

metyl--etylpyrole2-arbxylte 4c was [I 11 C.-B. Wang. C. K. Chang, Synthesis, 1979, S48.
c n etd t ,,'5-ermethyl-4-ethl-pyrol-2-crboxlat [121 A. W. Johnson, 1. T. Kay. E. Markham, R. Price, K.

convrte to3.5,',5-teramehyl4,4-diehylyr-B. Shaw, J. Chem. Soc., 1959. 3416.
romethene hydrobromide 9. mp 230-246'C (dec) [13] Personal communication from Professor E. Ste-
by the process described above (12,17]. A mixture vens. The X- z~v crystallographic analy~is will be
of the pyrromethene hydrobromide 9 (7.75 g, 0.02 published elsewhere.
mol) and potassium cyanide (5.6 g, 0.084 mol) in [14] T. G. Pavlopoulos. Spectrochim. Acta, 42A, 1986, 47.
ethanol (85%, 70 ml) was heated at 80'C with stir- [15] T. G. Pavlopoulos, J. H. Boxer. 1. R. Politzer, C. M.
ring for 45 minutes cooled to 40*C, and diluted with Lau, 1. AppI. Phys., 60, 1986. 4028.
water (80 ml) to bring about the precipitation of a (16] T. G. Paviopoulos. J. H. Bover. 1. R Polnzer, C. M.
pale brown solid. Flash chromatography on silica [1]Lau, Optics Comm., 64, 1987. 367.
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